ค้นหาบล็อกนี้

6/09/2554

เข้าดูข้อมูลส่วนตัว Facebook ของฉัน

facebook
สวัสดี Ninephoom.exercises,
Poll Za is inviting you to join Facebook. Once you join, you'll be able to see updates, photos and more from all of these friends ...and share your own!
Poll Za
เพื่อน 8 คน
Join Facebook
ninephoom.exercises@blogger.com ได้รับเชิญให้ใช้งานเฟสบุ๊คโดย Poll Za If you don't want to receive these emails from Facebook in the future or have your email address used for friend suggestions, you can unsubscribe. เรียนรู้เพิ่มเติม about this email. Facebook, Inc. P.O. Box 10005, Palo Alto, CA 94303

3/13/2554

Dek-D.COM - Jomjai Ninephoom ชวนคุณมาร่วมวงเล่น My.iD เป็นเพื่อนกัน!!


สวัสดี ninephoom.exercises,

คุณ Jomjai Ninephoom เพื่อนของคุณ
อยากชวนคุณมาลองเล่น My.iD ที่เว็บไซต์ Dek-D.com ด้วยกัน

มีอะไรใน My.iD ที่เจ๋งๆบ้าง ?
- ตกแต่ง Theme ให้หวือหวาสวยงาม อิสระสุดๆ ด้วยเทคนิคที่ง่ายถึงง่ายมาก
- Gift Box มอบของขวัญเท่ๆให้เพื่อน ในวันเกิดและโอกาสพิเศษต่างๆ
- Zib! แอบเม้าท์เพื่อนๆ โดยไม่ทันตั้งตัว
- Voice ป่าวประกาศให้เพื่อนร่วมวงรู้ว่าคุณกำลังแอบทำอะไรอยู่
- ร่วมวงพบปะกับนักเขียนวัยรุ่นมืออาชีพมากมาย
และของสนุกๆอื่นๆอีกเพียบ

ถ้าอยากลองก็สมัครได้เลยที่นี่
สมัคร ฟรี!

ลองแวะมาดู My.iD ของเราก่อน
อ้อ แล้วอย่าลืมมาเล่นด้วยกันนะ
My.iD ของ Jomjai Ninephoom

2/19/2554

Physics 736 - Exercises #6

Physics 736 - Exercises #6
1 Instructions
 The homework is due on Wednesday, April 7, 2010. Please leave
solutions in Karsten
Heeger's mailbox.
 This homework will require the use of some plotting routine and/or
computing pack-
age such as Mathematica, ROOT, etc. Pick your favorite. Mathematica is installed
on the library computers.
 Topics: probability density function, Monte Carlo, random numbers, covariance,
maximum likelihood.
2 Questions
1. Random Numbers { Generate random distributions of one thousand 2D and 3D
events. Make 2D and 3D scatter plots to illustrate the random
distribution of your
sequence of 1000 events. Describe what random number generator you or your soft-
ware package uses.
2. Illustrating the Central Limit Theorem { Show that whatever the
initial distribution,
a linear combination of a few variables almost always approximates to a Gaussian
distribution: Add together four random numbers ri , each distributed
uniformly and
independently in the range 0 to 1 to obtain a new variable z =
P
ri. Repeat the
procedure 50 times to obtain a set of 50 zj values. Plot these as a
histogram and
compare it with the appropriate Gaussian distribution. Give the mean
and variance
of this Gaussian distribution.
3. Simulating Radioactive Decay { This is a truly random process. The
probability of
decay is constant. The probability that a nucleus undergoes
radioactive decay in time
t is p, where p = t for t  1. The initial number of nuclei is
N0. Graph the
number of remaining nuclei as a function of time for the following cases:
N0 = 100, = 0:01 s􀀀1, t = 1 sec
N0 = 5000, = 0:03 s􀀀1, t = 1 sec
Show the results on both linear and logarithmic scales. Plot on the
same graphs the
expected decay curves.
4. Simulating Distributions { Write a program that generates the value
 according
to the distribution function f() = (sin2 + acos2)􀀀1 in the range 0    2.
Generate 10000 values using a=0.5 and a=0.001. Plot the results for
each and overlay
the distribution curve, f(), properly normalized.
5. Correlation and Error Matrix { Generate 1000 events of uncorrelated
(x,y) values,
each given by a Gaussian distribution with x = 1, x = 2, y = 2, y
= 0:5. Show
a scatter plot of the data. Calculate the error matrix and the
correlation coecient,
, for this data set.
1
Consider the function f(x; y) = 5x + 8y. Evaluate the variance of this function
directly using the data set, and also by using the equation using the
error matrix.
Now rotate the events by 30 degrees around the center of the
distribution and repeat
above exercises.
6. Consider an experiment that measures the lifetime of an unstable
nucleus, N, using
the reaction A ! Ne, N ! Xp. The creation and decay of N is signaled by the
electron and proton. The lifetime of each N, which follows the
probability density
function (PDF) f = 1
 e􀀀t= , is measured from the time between observing the elec-
tron and proton with a resolution of t. The expected probability
density function
is the convolution of the exponential decay and the Gaussian resolution:
f(tj; t) =
R 1
0
e
􀀀
(t􀀀t0)2
22
t p
2t
e􀀀t0=
 dt0
Generate 200 events with  = 1 and t = 0:5 sec. Use the maximum likelihood
method to nd ^ and the uncertainty, ^ . Plot the likelihood function and the
resulting PDF for the measured times compared to a histogram
containing the data.
Automate the maximum likelihood procedure so as to be able to repeat
this exercise
100 times, and plot the distribution of (^ 􀀀 )=^ for your 100
experiments and show
that it follows a unit Gaussian.
For one data sample assume that t is unknown and show a contour plot
in the ; t
plane with constant likelihood lnL = lnLmax 􀀀 1=2.
2